

ET the future of treatment?

Claire Harrison

Impacts of Essential Thrombocythaemia diagnosis:

Aims of therapy:

Prevent thrombotic & hemorrhagic events

Manage emotional & psychological burden

Relief of symptoms

- Microvascular
- Disease-related

What are the aims of therapy?

Minimize treatment-related morbidity

Reduce transformation risk

Manage special situations

Risk scores in ET

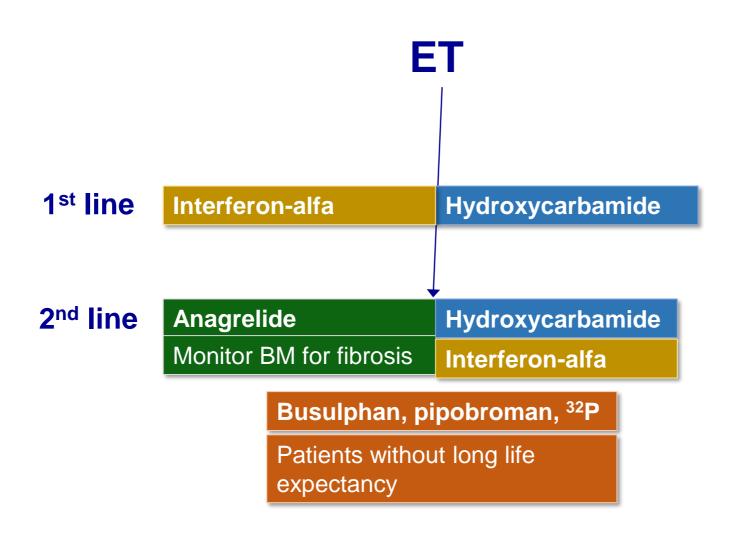
IPSET-thrombosis (revised)		MIPSS-ET		MPN personalised risk calculator
		Factor	Points [¶]	
Very low	No prior thrombosis + age ≤60 + JAK2- unmutated	Adverse mutation*	2	Available genomic data plus clinical factors (age, Hb, WBC, Plts, gender, prior thrombosis, splenomegaly)
Low	No prior thrombosis + age ≤60 years + JAK2- mutated	Age >60 yrs	3	
Intermediate	No thrombosis + age >60 + JAK2-unmutated	Male sex	1	
High	Thrombosis history (any age / genotype) or age >60 + JAK2- mutated	WBC ≥ 11 x 10 ⁹ /L	1	

[¶]Total score: 0-1=low risk; 2-5=intermediate risk; 6+=high risk. *SRSF2/SF3B1/U2AF1/TP53

What is high-risk ET?

- IPSET
- Traditional age
- (> 60 +/- thrombosis)

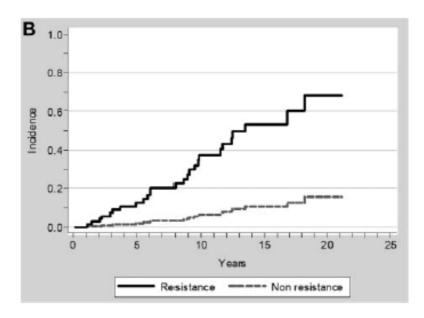
Also to consider:


- ? High cardiovascular risk
- Symptoms

In addition:

Currently unclear if we should really treat CALR-ET and triple negative ET in the same way as JAK2- or cMPL-ET

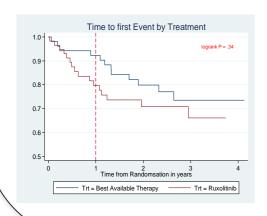
Despite IPSET score making most JAK negative ET intermediate risk despite count and age


Cytoreduction in high-risk ET

Resistance to hydroxycarbamide: adverse prognosis

Increased risk of death HR 5.6 (2.7-11.9)

Increased transformation to AML / MF HR 6.8 (3.0-15.4)


	Myelofibrosis		Acute leukaemia	
	HR (95% CI)	P	HR (95% CI)	P
Requirement for phlebotomies	1.2 (0.2–9.2)	0-8	_	_
Uncontrolled myeloproliferation	0.2 (0.02-2.2)	0.2	_	-
Progressive splenomegaly	9-1 (2-3-35-9)	0.002	_	_
Cytopenia	5.1 (1.9-13.7)	0.001	9.5 (2.6-34.5)	0.001
Extra-haematological toxicity	1.6 (0.7-3.6)	0.2	0.9 (0.2-4.3)	0.9

Alternatives for second line therapy

Ruxolitinib

MAJÎC

- 110 ET refractory / intolerant to HC
- Randomised rux vs BAT
- No difference in CHR at 1 yr
- No difference in survival
- No difference in transformation, thrombosis or haemorrhage

Harrison et al, Blood 2017

Other second-line agents

- Anagrelide (alone or in combination)
- Busulphan
- Radioactive phosphorus
- > Pipobroman

Pelabresib

BET inhibitor

Bomedemstat

LSD1 inhibitor

MANIFEST study

Current novel therapeutic approaches in ET

(Imago studies)

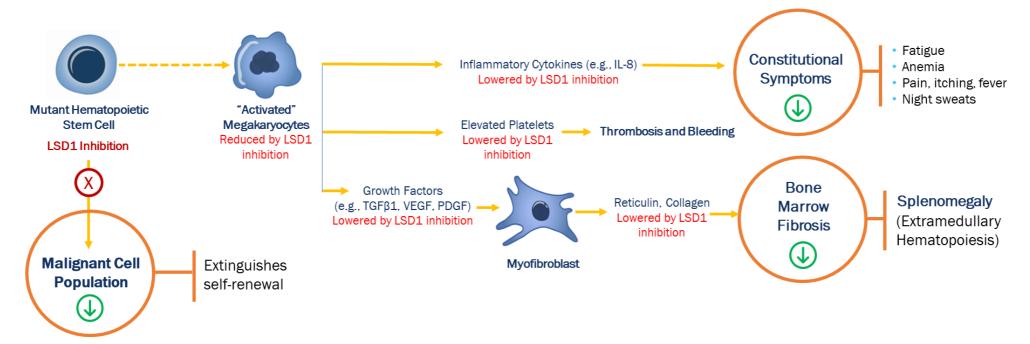
trials

Calreticulin Vaccination or immunotherapy **Pegylated Interferon 'BESREMi'**

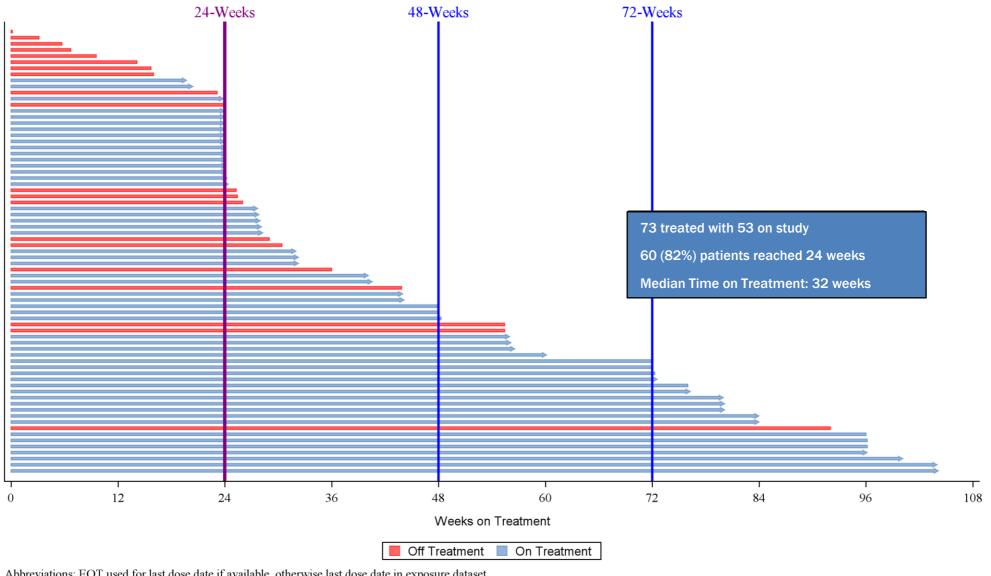
(Ropeginterferon 2b)

SURPASS ET study

Phase 2 Study of the LSD1 Inhibitor Bomedemstat (IMG-7289) for the Treatment of Essential Thrombocythemia (ET)

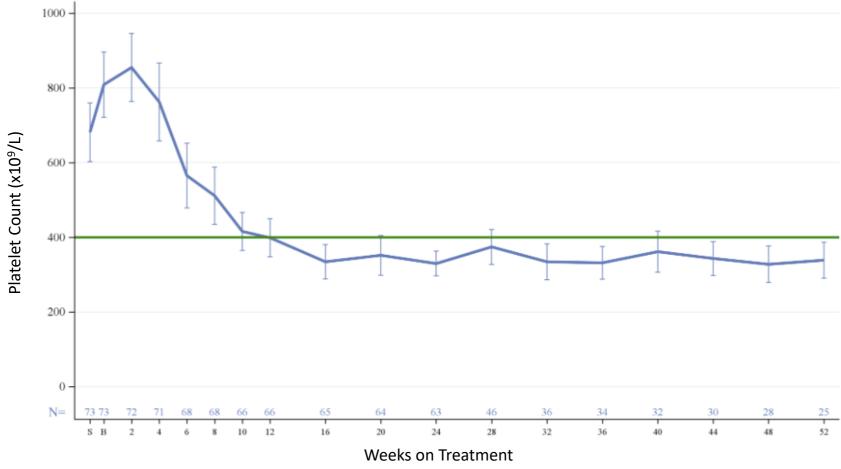

Harinder Gill*1, Francesca Palandri ², David M. Ross³, Tara Cochrane⁴, Courtney Tate⁵, Steven W. Lane⁶, Stephen R. Larsen⁷, Aaron T. Gerds⁸, Anna B. Halpern⁹, Jake Shortt¹⁰, James M. Rossetti¹¹, Kristen M. Pettit¹², James Liang¹³, Adam Mead¹⁴, Monia Marchetti¹⁵, Alessandro Vannucchi¹⁶, Andrew Wilson¹⁷, Joachim R. Göthert¹⁸, Merit Hanna¹⁹, Francesco Passamonti²⁰, William S. Stevenson²¹, Claire N. Harrison²², Moshe Talpaz²³, Nicola Vianelli²⁴, Hugh Young Rienhoff Jr.²⁵

¹Department of Medicine, University of Hong Kong, Hong Kong, China; ²Institute of Hematology "L. & A. Seràgnoli", Sant'Orsola-Malpighi University Hospital, Bologna, Italy; ³Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide; ⁴Department of Haematology, Gold Coast University Hospital, Southport, Australia; ⁶Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; ⁰Department of Medicine, Division of Hematology, University of Washington, Seattle, WA; ¹ºMonash Haematology, Monash Health, Clayton, Australia; ¹¹UPMC Hillman Cancer Center, Pittsburgh, PA; ¹²Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI; ¹³Middlemore Hospital, Auckland, New Zealand; ¹⁴MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; ¹⁵Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy; ¹6University of Florence, AOU Careggi, CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, Florence, Italy, ¹7University College London Hospitals NHS Foundation Trust, London, United Kingdom; ¹8Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany, ¹9North Shore Hospital. Waitemata District Health Board, Auckland, New Zealand; ²0Haematology, University of Insubria, Varese, Italy, ²¹Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia; ²²Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; ³3University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, ²4Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology L.e A. Seragnoli, Hematology, Bologna, Italy, ²5Imago BioSciences, Inc., San Carlos, CA



Rationale for Targeting LSD1 in MPNs

- Lysine Specific Demethylase 1 (LSD1) = Epigenetic enzyme
 - Demethylates histone H3K4 and other chromatin-associated proteins, e.g., p53
- LSD1 is required for the differentiation of megakaryocyte-erythroid progenitors to mature megakaryocytes
- LSD1 is overexpressed in MPNs


Enrollment and Treatment Status

Primary Objective: Reduction in Platelet Count

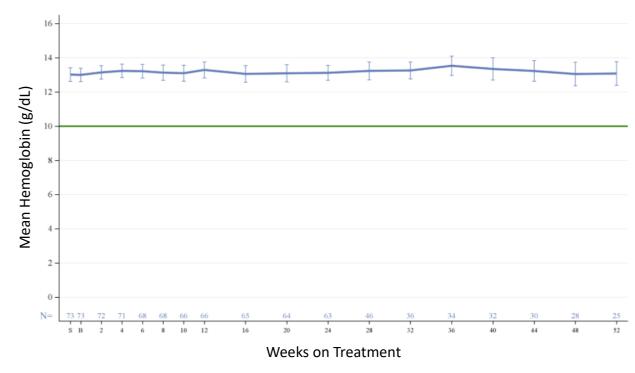
Mean Platelet Count (±95% CI) N=73

Of 62 patients treated for ≥24 weeks:

- 100% achieved a platelet count of ≤400 x 10⁹/L
- 95% achieved a platelet count of ≤400 x 10⁹/L in the absence of thromboembolic events
- Median time to ≤400 x 10⁹/L is 10 weeks

Of 28 patients treated for 48 weeks:

89% achieved a durable (≥12 weeks) platelet count of ≤400 x 10⁹/L by week 48


S=Screening, B = Last non-missing value closest to Day 1

Lowers WBCs and Maintains Hemoglobin (Hb) levels

• Mean WBC (±95% CI) N=73

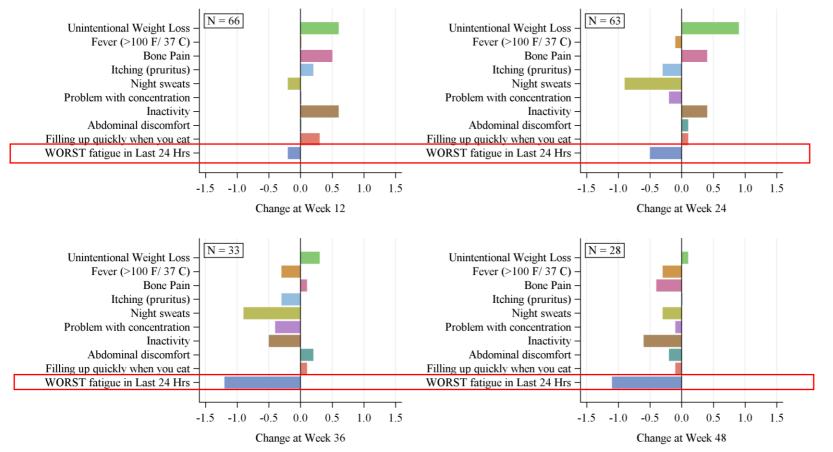
The state of the s

Mean Hb (±95% CI) N=73

S=Screening, B = Last non-missing value closest to Day 1

Platelet Responses by Driver Mutation (or absence thereof)

Mutation	No. of Patients*	Mean Baseline Platelet Count (x10 ⁹ /L)	Platelet Count Response [#] (%)
All Pts	73	809	100%
JAK2 ^{V617F}	34	730	100%
CALR	27	955	100%
MPL	3	881	100%
Triple Negative	6	493	100%


^{*3} patients did not have mutation status available.

Patients with CALR mutations respond similarly to patients with JAK2 mutations

[#]Any post baseline platelet count ≤400 x10⁹/L; ≥24 weeks treatment; N=62

Changes in Individual Components of the MPN-SAF TSS

For patients with a baseline TSS>20 (N=12),

75% had any decrease in TSS

67% had a reduction of ≥10 points

 Fatigue is the most severe symptom in CTP-201 and the most improved along with associated symptoms of inactivity and impaired concentration

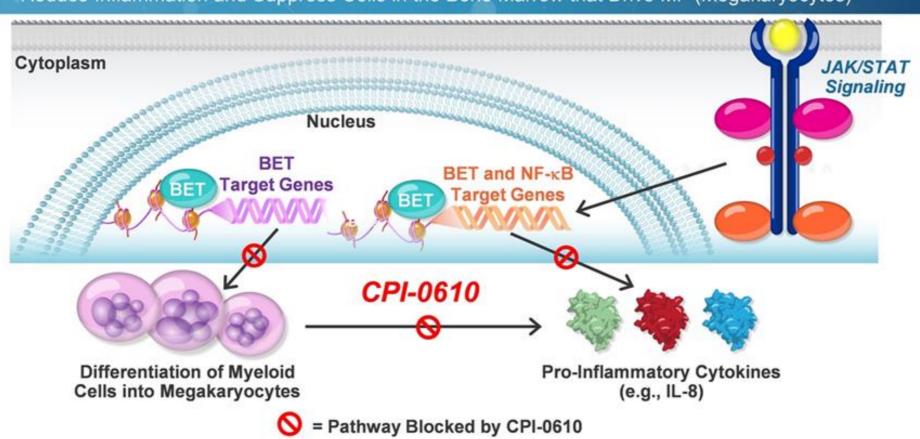
Safety and Tolerability Profile

Preferred Term (N=73)	Any Grade AEs	Grade 3/4 AEs	
Dysgeusia	40 (55%)	N/A	
Constipation	25 (34%)	1 (1%)	
Thrombocytopenia	20 (27%)	6 (8%)	
Arthralgia	20 (27%)	4 (6%)	
Fatigue	17 (23%)	0	
Contusion	15 (21%)	1 (1%)	
Diarrhoea	15 (21%)	1 (1%)	
Pruritus	13 (18%)	0	
Anaemia	12 (16%)	5 (7%)	
COVID-19	12 (16%)	0	
Headache	11 (15%)	1 (1%)	
Peripheral oedema	11 (15%)	1 (1%)	

Any grade of AE occurring at a frequency of ≥15% of patients included regardless of relatedness; N/A = Gr 3/4 events do not exist per CTCAE criteria

Discontinued from Study (N=20)		
AE	10	
Withdrawal of consent/Subject decision 7		
Investigator decision	1	
Disease progression to MF	1	
Death*	1	

^{*} Unrelated death due to aspiration pneumonia


- Bomedemstat is generally well-tolerated
- Most common AE was dysgeusia, (CHANGE IN TASTE)
 majority were Grade 1; only 3/73 leading to
 treatment discontinuation
- 22/73 (30%) of patients reported 38 SAEs
- 7 SAEs deemed related to bomedemstat (N=4 pts)
- One patient experienced thrombotic event –
 pulmonary embolism unrelated to bomedemstat

MANIFEST study - Pelabresib

Mechanism of Potential Disease Modification in Myelofibrosis

Reduce Inflammation and Suppress Cells in the Bone Marrow that Drive MF (Megakaryocytes)

MANIFEST Arm 4: Pelabresib monotherapy in patients with high-risk ET refractory or intolerant to hydroxyurea

Study Population

- > High-risk ET
- > Refractory or intolerant to hydroxyurea*3
- > ≥ two symptoms (average score ≥3/TSS ≥15) per MPN-SAF in the prior 7 days
- > Platelets >600 x 109/L

Pelabresib monotherapy 225 mg PO QD in 21-day cycles (14 days on, 7 days off) N=21

Primary Endpoint

Complete hematologic response at anytime (confirmed)

Normalization of platelet count (≤400 x 10⁹/L) and WBC (≤10 x 10⁹/L), confirmed 3 weeks later and a normal spleen size

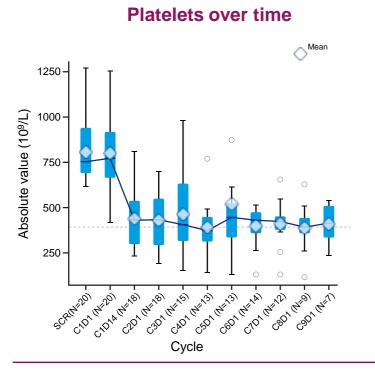
Secondary Endpoints

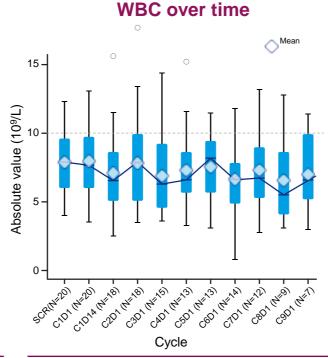
Partial hematologic response at anytime (confirmed)

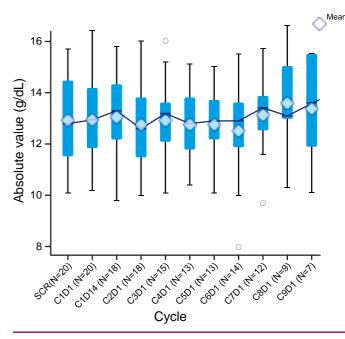
Platelets 400–600 x 10 9 /L and WBC within normal range (\leq 10 x 10 9 /L), confirmed 3 weeks later

Symptom improvement

The proportion of patients with ≥50% reduction from baseline in the MPN-SAF total score


Exploratory Endpoints

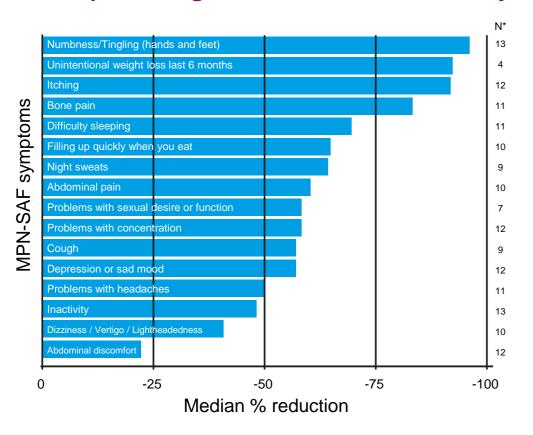

Translational assessment of *IL-8* expression change cytokines and mutation status


^{*}Refractory or intolerant criteria, as per Barosi, et al. 2007.

ET, essential thrombocythemia; TSS, total symptom score; MPN-SAF, Myeloproliferative Neoplasm Symptom Assessment Form; WBC, white blood cell.

MANIFEST Arm 4: Platelet count, white blood cell count and hemoglobin

Hemoglobin over time

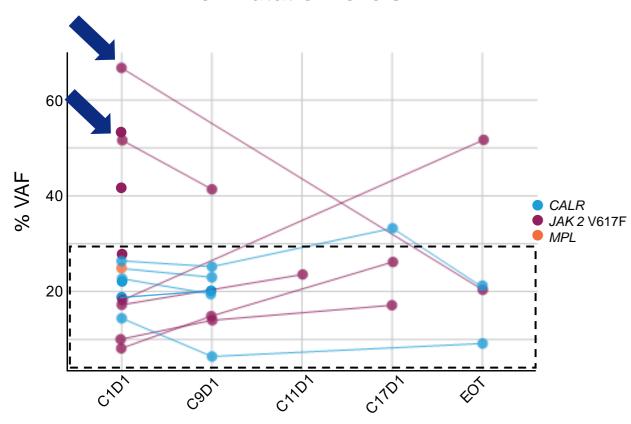

	Platelet count
≤400 × 10 ⁹ /L	60% (12/20)
Median at Wk 12	446 × 10 ⁹ /L
Median % change at Wk 12	-40%

	WBC count
≤10 × 10 ⁹ /L	95% (19/20)
Median at baseline	$7.9 \times 10^9 / L$
Median at Wk 12	8.2 × 10 ⁹ /L

Hemoglobin	Baseline	Week 12 (N=13)	Week 24 (N=7)
Mean (g/dL)	13.0	13.0	13.6
Median (g/dL)	13.0	13.0	13.4

MANIFEST Arm 4: Total symptom score

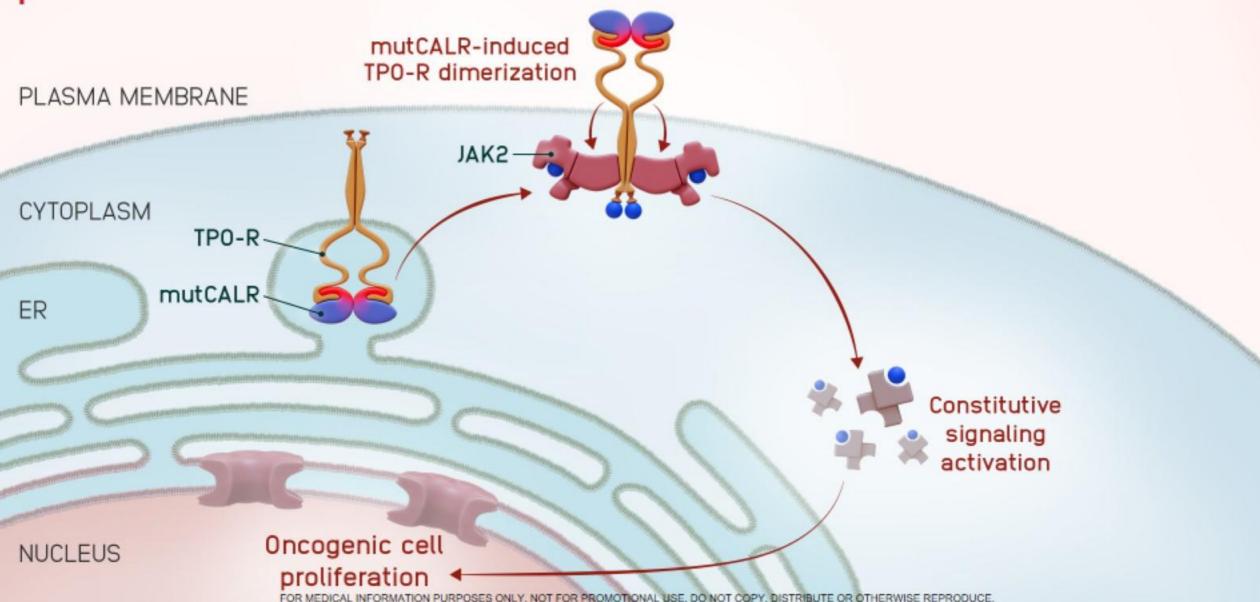
Best percentage reduction in MPN-SAF symptoms



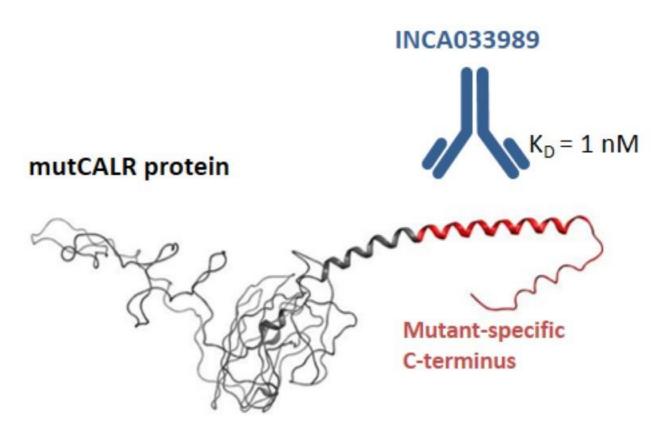
N=14*	MPN-SAF symptoms
TSS50 at anytime	50% (7/14)
Median % TSS reduction at Week 12	-31%

^{*}Patients with nonmissing and nonzero baseline symptom score.

MANIFEST Arm 4: VAF reduction in driver mutations

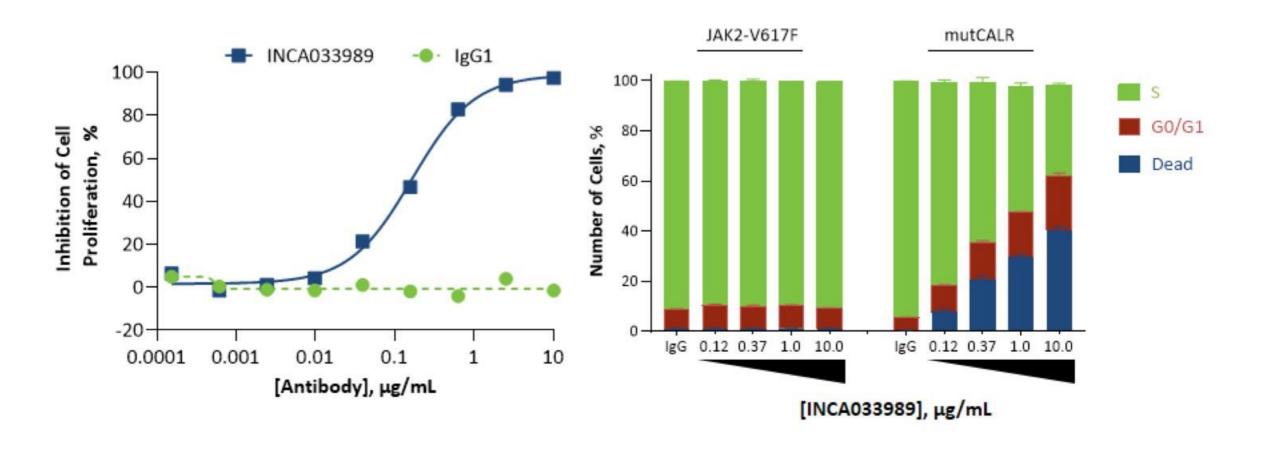

Driver mutation levels

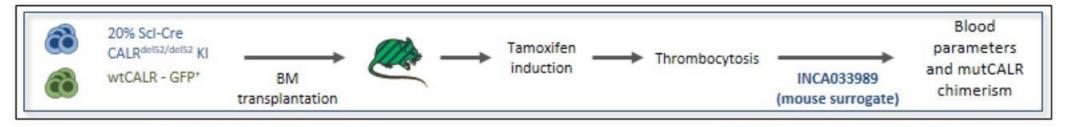
- > 2 out of 6 patients with JAK2 V617F mutation assessment post-baseline showed a meaningful VAF reduction (67% → 20% and 52% →40%)
- > VAF levels were maintained in most patients with ≤30% driver mutations


Peripheral blood next-generation sequencing panel to quantify the frequency of allele mutations at baseline and on treatment. One patient with the MPL mutation at baseline did not have a postbaseline assessment; therefore, they were not presented. Mutation profile change analyzed in 18 patients. During pelabresib treatment, 11 patients were analyzed over 4 timepoints. CXDX, Cycle X Day X; VAF, variant allele fraction.

Mutant calreticulin (mutCALR) induces oncogenic cell proliferation

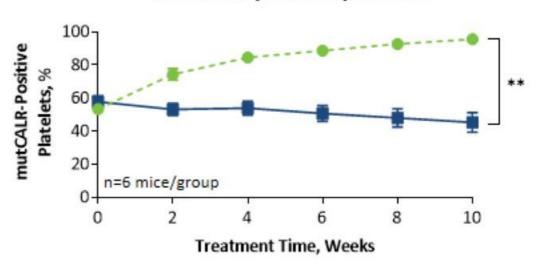
INCA033989: a mutCALR-specific monoclonal antibody


- Fully human IgG1
- Fc-silent
- Selective binding to mutCALR
- Antagonizes mutCALRinduced signaling and oncogenic function


Structure generated with RaptorX (Toyota Technological Institute at Chicago, IL, USA).

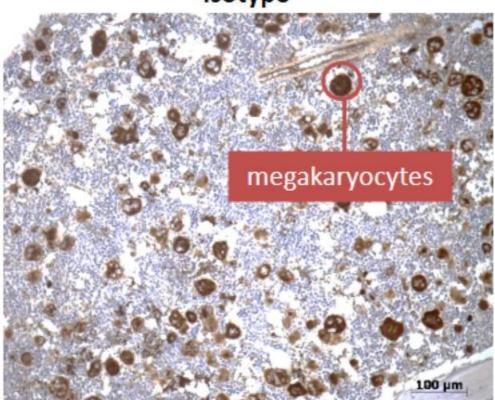
IgG, immunoglobulin G; Fc, fragment crystallizable; KD, equilibrium dissociation constant.

INCA033989 selectively inhibits cell proliferation and induces death of mutCALR+ cells

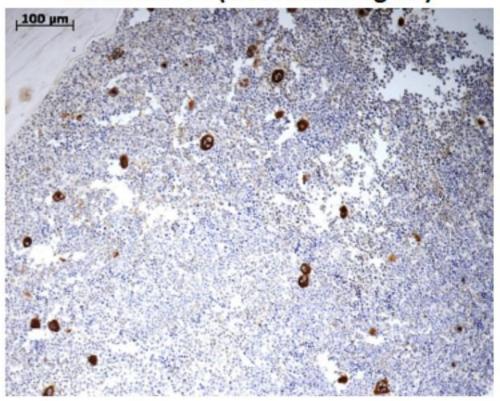

INCA033989 surrogate restores hematologic and molecular responses in a murine model of ET

Total platelet counts

mutCALR-positive platelets


*P<0.001; **P<0.0001.

BM, bone marrow; ET, essential thrombocythemia.


Caroline Marty, Elodie Rosa, Maxime Evrard, William Vainchenker, Isabelle Plo. Gustave Roussy Institute, INSERM, Université Paris-Saclay.

INCA033989 surrogate treatment re-establishes normal megakaryopoiesis

Isotype

INCA033989 (mouse surrogate)

Megakaryocytes stained with anti-von Willebrand factor antibody.

Caroline Marty, Elodie Rosa, Maxime Evrard, William Vainchenker, Isabelle Plo. Gustave Roussy Institute, INSERM, Université Paris-Saclay.

On-going issues in high-risk ET?

First and foremost is it ET? and Is it High-risk? Might differ according to drive mutation Don't forget basic cardiovascular risk assessment

Normal platelet count target?

<400 - high-risk PT1

<600 - Bergamo study

High platelet count correlates with haemorrhagic but not thrombotic risk

Haematological response?

- Standardised criteria from ELN (2009) and IWG-MRT (2013)
- Complete haem response: plts ≤400, normal spleen, WBC ≤10
- Complete remission: symptom improvement, histological remission, no vascular events
- Retrospective study showed no benefit of CR on thrombotic risk or survival

Barosi et al, Blood 2009, 2013; Hernandez-Boulla et al, B J Haematol 2011

Molecular response?

Patients in molecular response still have thrombotic and transformation events

? Different responses for different molecular profile

Uncertain long-term benefit

Thanks to and acknowledgement of:
GSTT MPN team and patients

